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Abstract
We review in detail an ab initio methodology—Born–Oppenheimer molecular
dynamics in the ensemble density-functional approach—able to handle
molecular dynamics studies of metal surfaces in a computationally efficient
and robust way. A summary of recent applications to the dynamical and
thermodynamic properties of sp-bonded metals is presented, focusing on the
cases of the Al(110) surface close to its premelting point and of the free surface
of liquid Na.

1. Introduction

In the last two decades quantum mechanical computational techniques have become
increasingly popular to describe condensed matter at the microscopic level, due to the
availability of powerful computers and the development of novel algorithms that take advantage
of this increased computational power. Ab initio or first-principles methods have thus emerged
as a powerful tool to extract detailed electronic and structural information in condensed matter
systems, without the need to resort to empirical parameters. Density-functional theory (DFT) is
the de facto method of choice for large-scale applications, since it often provides an adequate
level of accuracy, and requires a computational cost that scales more favourably with the
number of atoms than other methods. Applications of such techniques are now common, and
state-of-the-art research can take place not only on parallel and vector supercomputers, but also
on modestly priced desktop workstations. DFT electronic-structure approaches can be easily
combined with classical molecular dynamics techniques to provide an accurate description
of thermodynamic properties and phase transitions, atomic dynamics and chemical reactions,
and as a tool to coarsely sample the salient features of an unknown potential energy surface.
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Dynamical and thermodynamic phenomena at metal surfaces, such as premelting and blocked
melting, atomic diffusion, catalytic reactions and the corresponding activated pathways, are
all within reach of current capabilities.

In this paper, we shall focus on applications of first-principles molecular dynamics to
metal surfaces. Metal surfaces surround us in everyday life, and play a crucial role in industrial
processes that range from catalysis to smelting and refining—understanding their microscopic
behaviour and eventually designing novel functionalities is of paramount importance. In
metals, the balance between energetic and entropic effects at surfaces is more subtle than in
the case of semiconductors or insulators, leading to a rich phenomenology in the dependence
of structure on temperature. Some of these effects cannot be reproduced without an accurate
description of the electronic structure. Moreover, as one takes into account the electronic
structure from first principles in an ab initio calculation, with no fitting to experimental data,
phenomena that may not have been anticipated before the beginning of a simulation can emerge
in a natural way.

We will describe in detail the methodology of one approach well suited for metals, namely
Born–Oppenheimer molecular dynamics using ensemble density-functional theory. Illustrative
results obtained with this approach will be described in the following sections, and alternative
approaches mentioned.

2. Overview of methods

2.1. Molecular dynamics

In a molecular dynamics (MD) simulation the microscopic trajectory of each individual particle
in the system is determined by the integration of Newton’s equations of motion. In classical
MD, the system is considered to be composed of massive, pointlike particles, with forces acting
between them derived from empirical effective potentials. Most forms of ab initio MD make
a similar assumption, considering the atomic nuclei as classical particles evolving according
to the Newtonian equations of motion. However, the forces acting on the nuclei are deemed
quantum mechanical in nature, and are derived from accurate electronic structure calculations.
Since atomic nuclei are five orders of magnitude smaller than the atoms themselves, and
each nucleon is two thousand times heavier than an electron, such a classical approximation
(essentially a Born–Oppenheimer decomposition of the full wavefunction into an electronic
wavefunction in the presence of an external electrostatic potential due to the nuclei) is often
perfectly appropriate. At very low temperatures, quantum delocalization effects can gain
relevance; this can be significant for the lightest elements, such as hydrogen. More importantly,
the use of classical equations of motion implies that the vibrational degrees of freedom are not
quantized, and follow classical Boltzmann statistics. Such an approximation can be relevant,
since at room temperature every normal mode with frequency higher than ∼300 cm−1 will be
affected—while in reality high-frequency modes are often effectively in their zero-point motion
ground state, in a classical MD simulation they exchange energy back and forth with all other
degrees of freedom. Broadly speaking, the Debye temperature provides a reasonable cut-off
above which a system can be considered to be accurately described by classical statistics. While
path-integral techniques can be used to fully describe these quantum degrees of freedom, the
vast majority of applications of quantum mechanical molecular dynamics techniques consider
a classical evolution of the nuclei, adiabatically separated from the electrons, with a parametric
evolution for the electronic wavefunction always in the ground state with respect to the
instantaneous nuclear coordinates. First-principles molecular dynamics was first introduced
by Car and Parrinello [1] in 1985; its essential features will be briefly described in section 2.3.
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The Car–Parrinello approach introduces an extended Lagrangian to provide a simultaneous
evolution of the physical (nuclear coordinates) and computational degrees of freedom
(expansion coefficients for the electronic wavefunctions). Often an alternative approach is used
(Born–Oppenheimer molecular dynamics), where the electronic degrees of freedom are self-
consistently optimized at every ionic time step, trading computational efficiency and a coherent
dynamical scheme for a simpler and more resilient algorithmic implementation. Detailed
discussion of the practicalities involved in undertaking a molecular dynamics simulation can
be found in [2]; for a fuller review of ab initio MD, see [3], and for some of the more subtle
details involving extended Car–Parrinello Lagrangians see [4] and references therein.

2.2. Born–Oppenheimer molecular dynamics

As mentioned before, in Born–Oppenheimer MD simulations [5] use is made of the fact that
the nuclei have masses significantly greater than the electrons. This mass difference means
that typical nuclear frequencies are much smaller than electronic ones, so a separation between
the nuclear and electronic motion is possible. Adiabaticity is assumed, whereby the electronic
system relaxes instantaneously to the ground state for each configuration of the nuclei. The
Born–Oppenheimer molecular dynamics (BOMD) scheme thus straightforwardly solves the
static electronic structure problem for fixed nuclei at each MD step, and evolves the nuclei
according to the classical Newtonian equations of motion.

For this purpose we introduce the Hamiltonian He for the electrons in the field of the
classical nuclei (atomic units are used, h̄ = me = e = 4πε0 = 1):

He({ri}, {RI }) = −1

2

∑
i

∇2
i +

∑
i< j

1

|ri − r j | −
∑
I,i

Z I

|RI − ri | +
∑
I<J

Z I Z J

|RI − RJ | , (1)

where r and R denote positions of electrons and nuclei respectively. Then the ground state
electronic wavefunction�0 satisfies the stationary Schrödinger equation:

He�0 = E0�0. (2)

The force on a nucleus I at time t is given by the total derivative of the potential energy
surface. The Hellmann–Feynman theorem [6, 7] states that it can be calculated simply as the
expectation value of the ‘force’ operator:

MI R̈I (t) = −∇I 〈�0|He|�0〉 = −〈�0|∇IHe|�0〉. (3)

The forces are thus determined by the ground-state structure of the electronic system, and
derive exclusively from a combination of the electrostatic repulsion between the nuclei and the
electrostatic interactions between the nuclei and the electronic charge density (no other terms
enter the gradient of the Hamiltonian with respect to ionic coordinates). All subtle quantum
mechanical effects enter the calculation of the forces only through the ground state density
they determine. The time step needed for an accurate integration of the equations of motion
is completely determined by the nuclear dynamics; the computationally expensive step is the
calculation of the electronic ground state at each MD step. Extrapolation techniques for the
wavefunctions or for the charge density from one time step to the next [8] can greatly help in
accelerating the convergence to self-consistency at each new step.

2.3. Car–Parrinello molecular dynamics

The Car–Parrinello MD scheme [1] reformulates the problem of the coupled electronic and
nuclear systems, beginning with an extended Lagrangian in which the electronic degrees of
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freedom are included as classical dynamical variables with fictitious masses {µi}:
LCP = 1

2

∑
I

MI Ṙ2
I + 1

2

∑
i

µi〈ψ̇i |ψ̇i〉 − 〈�0|He|�0〉 + {constraints}. (4)

The last term accounts for the holonomic constraint of orthonormality of the single-particle
electronic orbitals {ψi }:∫

ψ∗
i (r, t)ψ j (r, t) dr = δi j , (5)

(we are considering the wavefunction�0 in the form of a Slater determinant of single-particle
orbitals—as is the case in density-functional theory, described below, or in Hartree–Fock
theory). Such an extended Lagrangian leads to the following equations of motion for the
coupled electronic and nuclear degrees of freedom, which are propagated simultaneously:

µi ψ̈i (r, t) = − δ

δψ∗
i

〈�0|He|�0〉 +
∑

k

�ikψk(r, t)

MI R̈I (t) = − ∂

∂RI
〈�0|He|�0〉.

(6)

In equations (6), {�ik} are the Lagrange multipliers introduced to account for the constraints of
equation (5). If the fictitious masses {µi} for the electronic degrees of freedom are chosen to be
much smaller than the nuclear masses, then a metastable separation between the evolution of the
electronic orbitals and the (much slower) dynamics of the massive nuclei ensues, assuring that
the nuclei act only adiabatically as a driving force for the electronic wavefunctions. Oscillations
of the orbitals that are coherent with the instantaneous motion of the nuclei are favoured, and
the orbitals will evolve remaining close to the ground state. In practical terms, there will always
be a trade-off between the choice of smaller electronic orbital masses (which will give a more
responsive dynamics and preserve a quasi-adiabatic behaviour but also require a small MD
time step) and the requirement of keeping the time step for the integration of the equations of
motion as large as possible, in order to decrease the computational cost to evolve the system
for a given time.

We note here an important point relevant for applications to metallic systems. The gap
in the single-particle energy spectrum determines the largest time step that will maintain the
(metastable) adiabatic separation between the electronic and nuclear subsystems during the
simulation. In metals there is no gap in the energy spectrum, leading to a severe breakdown of
such separation. Several solutions to this problem have been proposed, from the coupling of
thermostats to the electronic subsystem [9, 10], to the use of mixed Car–Parrinello/ensemble-
DFT approaches [11, 12], to resorting to Born–Oppenheimer molecular dynamics [13, 14] or
Born–Oppenheimer/ensemble DFT [15–17].

2.4. First-principles electronic structure: density-functional theory

To perform an ab initio molecular dynamics simulation, one requires a first-principles
determination of the electronic structure at each time step. This can be obtained using one of a
number of first-principles electronic structure methods,among which density-functional theory
(DFT) is a popular choice for its accuracy and relatively low computational cost. An algorithmic
implementation of DFT that is particularly suited to metallic systems is the ensemble density-
functional theory (eDFT) approach, that will be described in section 2.7.

The original formulation of density-functional theory for application to quantum systems
is embodied in two fundamental pieces of work: the Hohenberg–Kohn theorems [18] and
the Kohn–Sham mapping [19]. Since these techniques have become popular in applications,
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a number of comprehensive reviews of DFT and its implementations exist in the literature
(e.g. [20, 21]), so only a brief outline covering the main points will be given here. The
Hohenberg–Kohn theorems, published in 1964, together with the Kohn–Sham mapping,
published in 1965,provide a computationally convenient (and in principle,exact) reformulation
of the quantum mechanical problem of a system of N interacting electrons.

The first Hohenberg–Kohn theorem legitimizes the use of the electronic density n(r) as
a fundamental quantity to specify the state of a system, by showing that there is a one-to-one
correspondencebetween the charge density of the system of electrons and the external potential
v(r) acting on that system. While there was earlier heuristic work focusing on the electron
density as a variable for describing the properties—the Thomas–Fermi theory [22–24]—it
did not provide qualitatively correct results except for the case of single atoms. The second
Hohenberg–Kohn theorem demonstrates that the ground state energy of an electronic system
is determined by a functional E[n(r)] of the electronic density; for a given external potential,
this functional is a minimum for the ground state density n0(r), and it gives the ground state
energy of the system E0. In this sense, the second Hohenberg–Kohn theorem represents the
recasting of the Schrödinger equation into a variational principle on the charge density only.
Denoting the external potential by vext(r), the interaction of the electronic charge density with
the external potential can be separated out in the total energy functional:

E[n(r)] = F[n(r)] +
∫
vext(r)n(r) dr; (7)

F[n] is the density functional of DFT, and it can be shown that it does not depend explicitly on
the external potential—hence it is a universal functional of the charge density. The Hohenberg–
Kohn theorems allow us in principle to move away from a description based on the N-body
wavefunction (dependent on 3N variables) to a description based on the density n(r) alone,
a function of only three variables. In practice, even though the density functional F[n] is
perfectly well defined, its explicit dependence on the charge density is not known. It is also
very difficult to find accurate approximations based on the charge density alone—e.g. the
quantum kinetic energy, that is contained in principle in F[n], derives from the curvature of
the many-body wavefunction, and such information is all but lost in the charge density itself.
Notwithstanding these difficulties, approximations to F[n] have been found that correctly
describe several systems, such as sp-bonded metals. For recent applications, see [25–29].

The Kohn–Sham approach allows us to recover an accurate description of the main
contributions to the total electronic energy (i.e. the quantum kinetic energy and the electrostatic
Hartree contributions), with the help of a mapping of the true system of N interacting electrons
onto a fictitious system of N non-interacting electrons, with the density n(r) of the fictitious
system being equal to that of the real one. A set of N orthonormal single-particle orbitals
{ψi } (the Kohn–Sham eigenstates) is thus introduced, such that the density (of both systems)
is given by

n(r) =
N∑

i=1

ψ∗
i (r)ψi(r). (8)

The universal energy functional F[n(r)] is then decomposed as follows:

E[n] = Ts[n] + EH[n] +
∫
vext(r)n(r) dr + Exc[n], (9)

in which

Ts[n] = − 1
2

N∑
i=1

∫
ψ∗

i (r)∇2ψi (r) dr (10)
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is the kinetic energy of the non-interacting electronic system; the Hartree term

EH[n] = 1

2

∫
dr

∫
dr′ n(r)n(r′)

|r − r′| (11)

takes account of the Coulomb interaction of the charge density, and the external potential
vext(r) is that due to the nuclei,

vext(r) = −
∑

i

Z I

|RI − r| +
∑
I<J

Z I Z J

|RI − RJ | . (12)

The final term Exc in equation (9) is the exchange–correlation energy, operationally defined as
the difference between the first three terms on the right-hand side of equation (9) and the exact
energy of the system. The form of this universal exchange–correlation functional is unknown,
and it contains most of the many-body complexity of the interacting electron gas. Still, its
value in absolute terms is comparatively small, and, most importantly, simple approximations
to it have proved to be reasonably accurate for a great variety of applications.

According to the second Hohenberg–Kohn theorem, the energy functional E[n] in
equation (9) must be minimized with respect to the density n(r) (subject to the constraint of
charge conservation) to find the ground state density and total energy. The minimum condition
can be written as

δ

[
Ts[n] + EH[n] +

∫
vext(r)n(r) dr + Exc[n] − µ

(∫
n(r) dr − N

)]
= 0, (13)

where the Lagrange multiplier µ has been introduced to take account of charge conservation
and orthonormality of the orbitals. Defining the Kohn–Sham effective potential vKS(r),

vKS(r) = vext(r) +
∫

n(r′)
|r − r′| dr′ + vxc(r), (14)

in which

vxc(r) = δExc[n(r)]
δn(r)

, (15)

the minimization problem in equation (13) becomes

δTs[n(r)]
δn(r)

+ vKS(r) = µ. (16)

Finally, evaluating the functional derivative, the Euler–Lagrange equations for the constrained
minimization problem, known as the Kohn–Sham equations, are obtained:[− 1

2∇2 + vKS(r)
]
ψi (r) = εiψi (r). (17)

A common approach to solving the Kohn–Sham equations is by iterative evolution of some
‘reasonable’ trial set of orbitals. Alternatively, the minimization problem they represent (that
is finding the minimum of the total energy functional) can be solved by direct methods, such
as the conjugate gradient technique [20].

As noted above, the form of the exchange–correlation functional in equation (9) is
unknown, so an approximation is needed. A number of such approximations for the exchange–
correlation energy functional have been published; popular and fairly reliable ones are the
local density approximation (LDA), that was in fact originally suggested in the paper of Kohn
and Sham [19], and the generalized gradient approximation (GGA) [30]. The local density
approximation considers the exchange–correlation energy in each volume element dr at r
(where the density is n(r)) to be that of a homogeneous electron gas of density n:

ELDA
xc [n(r)] =

∫
εxc(n)n(r) dr, (18)
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where εxc(n) is the exchange–correlation energy per unit density of a homogeneous electron gas
at constant density n. This has been obtained by interpolation between results from quantum
Monte Carlo simulations [31] and high density asymptotic limits [32]. Despite its simplicity, it
has been found that the local density approximation works surprisingly well in many practical
applications. As their name suggests, the generalized gradient approximations include terms
dependent on gradients of the charge density in the expression for the exchange–correlation
functional.

The Hohenberg–Kohn–Sham density-functional theory formalism described above has
become very popular for implementation in computational codes and a great number of practical
applications have been made using it (for an extensive review of applications see [3]).

2.5. Plane waves and pseudopotentials

A number of additional techniques are often utilized when performing practical calculations
within the density-functional theory described in section 2.4; an important group which
generally go together are plane-wave basis-set expansions, fast Fourier transforms and
pseudopotentials. These will be discussed briefly below but are reviewed in greater detail
in [20].

Expansion of wavefunctions and potentials in plane-wave basis sets is an approach having
its roots in solid state theory. In a crystal the periodicity of the lattice means that the potential
and charge density also have that same periodicity. When periodic boundary conditions are in
effect, Bloch’s theorem [33] allows expansion of the Kohn–Sham eigenstates {ψi } in a discrete
set of plane waves and the Kohn–Sham equations (17) to be written in their reciprocal space
form: ∑

G′

[
1
2 |k + G|2δGG′ + vKS(G − G′)

]
ci,k+G′ = εi ci,k+G, (19)

where ci,k+G are expansion coefficients for the KS orbitals in the plane wave basis, G and G′
are reciprocal lattice vectors for the system (determined by the periodic boundary conditions),
and vKS(G − G′) is the Fourier transform of the Kohn–Sham potential of equation (14).

As can be seen in equation (19), the kinetic energy operator is diagonal in reciprocal
space; conversely, the potential energy acts diagonally in real space. The existence of efficient
algorithms for performing conversions between the real and reciprocal spaces, the fast Fourier
transforms (FFTs)4, means it is computationally advantageous to evaluate the two parts of the
energy in the spaces in which they are respectively diagonal and then convert between the two
spaces by applying an FFT to obtain the final result.

Plane wave basis sets are not only useful for calculations where the system being
considered possesses a full three-dimensional periodicity as in a pure crystal. They can also
be used where there is a partial periodicity (such as for surfaces, where there is periodicity
parallel to the surface) and even for inherently aperiodic systems such as molecules, provided
the system of interest is embedded in a periodic ‘supercell’ that has to be large enough to
reduce the interactions between periodic images of the system to an acceptable level.

The pseudopotential approach [34–36] exploits the natural separation in energy scales
that exists between the ‘valence’ electrons, that are the loosely bound electrons participating
in chemical bonding, and the ‘core’ electrons, that are much more tightly bound and largely
unaffected by changes in the chemical environment. A pseudopotential replaces the combined
effects of nucleus and (frozen) core electrons, and is constructed to reproduce the scattering
of the valence electrons that the ‘all-electron’ core would give. Since the core electrons have

4 A useful source of information about fast Fourier transform routines is the website http://www.fftw.org/

http://www.fftw.org/
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been effectively removed from the calculations, the pseudopotential is much smoother than the
original unscreened Coulomb potential. The approach is critical when a plane wave basis set
is used for the calculations. Since the valence electrons must have very high frequency spatial
oscillations close to the nuclei to maintain orthogonality with the lower lying core electrons,
the number of plane waves that would be required to accurately describe this region would
be prohibitive. Replacing the nucleus and core electrons by a pseudopotential smoothes out
the Coulombic divergence, and eliminates the need for the orthogonality oscillations. Various
schemes have been devised to generate pseudopotentials that are both accurate and economical
for use in ab initio electronic structure calculations—for a detailed description of the established
algorithms for generating norm-conserving and ‘ultrasoft’ pseudopotentials, see [37–39].

2.6. Finite-temperature DFT extensions

The canonical, finite-temperature extension of density-functional theory was developed by
Mermin [40] soon after the first papers by Hohenberg, Kohn, and Sham. A comprehensive
description can be found in [41]. As noted earlier, the standard formulation of quantum
mechanics for a system of N electrons uses the N-body wavefunction |�N 〉 to describe the
system. If the system can be represented in this way, it is said to be in a pure state. Alternatively,
the theory can be formulated in terms of a density operator, defined by

γ̂ = |�N 〉〈�N |. (20)

Expectation values of operators, for instance the energy of the system, are determined as traces:

E = 〈Ĥ 〉 = 〈�|Ĥ |�〉 = Tr(γ̂ Ĥ) = Tr(Ĥ γ̂ ). (21)

If the system of interest is part of a larger system, and the total system cannot be described as
a superposition of pure states, i.e. it cannot be characterized by a wavefunction, then it is said
to be in a mixed state, and description using a density operator becomes mandatory. In this
case, the ensemble density operator [41] is used:

	̂N =
∑

i

wi |�i〉〈�i |. (22)

It is a sum over all the pure states {|�i〉} with associated weights {wi}. The {wi} appearing in
equation (22) represent a statistical distribution among the available pure states, resulting from
a combination of the probabilistic nature of the wavefunction and an imperfect knowledge of
the system. As with a system in a pure state, expectation values for systems in mixed states
can be obtained using the density operator (so statements such as equation (21) also apply for
systems in mixed states).

For studies at finite temperature, the system of interest will be coupled to a heat bath. As
microscopic details of the interaction between the system of interest and the heat bath will
not generally be known, specification of the exact Hamiltonian for the complete system is
impossible, so the system of interest will be in a mixed state and use of an ensemble density
operator is necessary. For finite-temperature considerations, free energies are the pertinent
quantities, so an expression for entropy is needed. The one arising by analogy with classical
statistical mechanics [42] is

S = −kB

∑
i

wi lnwi (23)

= −kB Tr(	̂N ln 	̂N ). (24)

If we consider the canonical ensemble, which is a mixture of pure states all having the same
particle number N , the free energy of interest is the Helmholtz free energy (A = E − T S),
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constructed in the density operator formalism as

A[	̂N ] = Tr 	̂N

(
1

β
ln 	̂N + Ĥ

)
, (25)

with the standard notation β = 1/kBT . This free energy is a functional of the density operator,
and a variational principle can be proved [42]:

A[	0
N ] � A[	N ], (26)

in which 	0
N is the equilibrium density operator. From here, the derivation of a canonical

finite-temperature density-functional theory follows the Hohenberg–Kohn theory described
in section 2.4 and a Kohn–Sham type mapping onto a non-interacting reference system can
be made. In the finite-temperature development, we allow fractional occupation numbers
fi ∈ [0, 1], so that the density is given by

n(r) =
∞∑

i=1

fi |ψi (r)|2. (27)

Taking the Fermi–Dirac distribution for the occupancies,

fi = f

(
εi − µ

T

)
=

(
1 + exp

(
εi − µ

kBT

))−1

, (28)

the entropy term can be evaluated:

S = −kB

∑
i

[ fi ln fi + (1 − fi ) ln(1 − fi )]. (29)

Accordingly, the free energy functional is

A[T ; {ψi}, { fi }] = Ts[n] + EH[n] +
∫
vext(r)n(r) dr + Eβ,xc[n]

+
1

β

∑
i

[ fi ln fi + (1 − fi ) ln(1 − fi )], (30)

where the subscript β signifies that quantities are being considered at finite temperature. The
canonical Mermin–Kohn–Sham equations that result from minimization of the functional in
equation (30) are[− 1

2∇2 + vH(r) + vβ,xc(r) + vext(r)
]
ψi (r) = εiψi (r), (31)

and the charge density is now given by equation (27).

2.7. Ensemble DFT

Ensemble density-functional theory is an extension of the DFT schemes described in the last
section. We consider a set of generalized occupancies f = { fi j}, being the representation of
the density operator 	̂ in the basis set of the orbitals {ψi } [43]. Equation (30) becomes

A[T ; {ψi}, { fi j }] =
∑

i j

f j i 〈ψi |T̂e + V̂ext|ψ j〉 + EH[n] + Eβ,xc[n] − T S[{ fi j }] (32)

n(r) =
∑

i j

f j iψ
∗
i (r)ψ j(r), (33)

where the matrix elements that only depend on the orbitals have been separated out and placed
in the first term; V̂ext appears there since in general it will be generated by an array of non-local
pseudopotentials. The entropy term S appearing in equation (32) may be that derived from the
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Fermi–Dirac distribution already described, or obtained from one of the generalized smearing
methods to be described in section 2.9.

It can be shown that the free energy functional and the charge density do not change
following a unitary transformation of the orbitals (this is because they are written as traces)
and so they are representation covariant. We can then define the projected functional G, a
well defined functional of the orbitals only, as

G[T ; {ψi}] = min{ fi j }
A[T ; {ψi}, { fi j }]. (34)

This projected functional is invariant for any unitary transformation of the orbitals, and does
not depend explicitly on the occupation matrix—it is as well conditioned as the total energy
functional in the case of a semiconductor or insulator [43]. The definition of the projected
functional G allows the construction of a practical minimization strategy. The minimization of
the free energy functional A breaks down naturally into a two-loop nested scheme: there is an
inner loop on the occupancies { fi j }, where the functional G is calculated by bringing A to self-
consistency with respect to a fixed set of orbitals {ψi }; this is followed by an outer step to update
the orbitals. The strategy for performing the inner loop minimization on the occupancy matrix
is modelled on the non-self-consistent problem; in that case, the required set of occupancies
would be obtained by diagonalizing the Hamiltonian, applying the thermal distribution and
then rotating back to the orbital representation. This non-self-consistent solution is used
as the search direction in a direct line-minimization in the space of the { fi j} for updating
the occupation matrix. We introduce the following notation for the matrix elements of the
Hamiltonian that depend on just the orbitals or on the density respectively:

hi j = 〈ψi |T̂s + V̂ext|ψ j 〉 (35)

vi j = 〈ψi |v̂H[n] + V̂xc[n]|ψ j〉. (36)

After every update of the orbitals, the matrix elements {hi j} are calculated, and they remain
unchanged during the inner loop on the occupancies, as the orbitals do not vary during
the occupancy search. The charge density (for the mth iteration in the occupancy loop) is
calculated:

ρ(m)(r) =
∑

i j

f (m)j i ψ
∗
i (r)ψ j(r). (37)

This is the most computationally expensive part of the occupancy update, and it is efficiently
calculated in the rotated representation in which the occupations are diagonal. From this
density, the density-dependent terms E (m)

H + E (m)
xc , V (m)

H + v(m)xc and subsequently V (m)
i j are

determined. The entropy term is obtained via the diagonalization of f :

f (m)i j =
∑

l

Y (m)†
il f (m)l Y (m)

l j . (38)

The Hamiltonian is updated and diagonalized:

H (m)
i j = hi j + V (m)

i j =
∑

l

Z (m)†il ε
(m)
l Z (m)l j . (39)

In a non-self-consistent problem, the solution for f would be obtained by applying the thermal
distribution to the eigenvalues of the Hamiltonian as

f̃ (m)i j =
∑

l

Z (m)†il fT(ε
(m)
l − µ)Z (m)l j , (40)

where fT is the thermal distribution being used. Although this is not the solution to the self-
consistent problem here, it provides the search direction in the fi j space: �f (m) = f̃ (m) − f (m).
Taking a step of size β along this search direction, the occupancies become

f (m+1)
β = f (m) + β�f (m). (41)
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This search is unconstrained as the trace of f is equal to N at both end-points β = 0 and 1,
and by linearity at all points in between.

In the outer orbital loop, line minimization based on a conjugate gradient scheme with
preconditioning works well. The use of a preconditioned formulation is driven by the
broader spectrum of the Hamiltonian { fiεi } (rather than the {εi } as would be the case for
semiconductors/insulators), which contains values close to zero that cause significantly slower
convergence than would be the case in a system having a gap in its energy spectrum. With the
set of scaled variables c̃in = √

fi cin , the preconditioned gradients for the original variables
would be

− δG

δψ∗
i

−→ − 1

fi

δG

δψ∗
i

= −Ĥψi . (42)

To generalize to the non-diagonal case at hand, the gradients of G are calculated in the
original representation, passed into the diagonal representation, preconditioned according to
equation (42), and then transformed back into the original representation. The gradients in the
original representation are

gi = − δG

δψ∗
i

= −
∑

j

f j i Ĥψ j , (43)

and in the diagonal representation (defined by f ′ = f ′
ii δi j = UfU†) they are

g′
i = − δG

δψ ′∗
i

= −
∑

j

f ′
j i Ĥψ ′

j = − f ′
ii Ĥψ ′

i . (44)

Applying the preconditioning, the gradients in the diagonal representation are

G′
i = −Ĥψ ′

i = −Ĥ

(∑
m

U∗
imψm

)
. (45)

Finally, rotating back, the preconditioned gradients in the original non-diagonal representation
are

Gi =
∑

n

U †∗
in G′

n = −
∑

m

(∑
n

U †∗
in U∗

nm

)
Ĥψm = −Ĥψi . (46)

Use of the preconditioned gradients Gi to construct conjugate directions (details of which are
provided in [44]) provides greatly improved convergence, updating the higher bands with the
same speed as the lower ones, and provides a simple expression for the computation of the
gradients. In addition, when a plane wave basis set is used in the computation, a standard
kinetic preconditioning is applied, so that the procedure for updating the orbitals is said to be
doubly preconditioned.

In earlier schemes, the occupancies and rotations of the orbitals within the occupied
subspace were treated separately. The ensemble DFT approach described here treats them
consistently as part of the same problem. Also, as the scheme is variational, the free energy
is bound to decrease at each step (the importance of a consistent variational minimization
of the free energy functional was stressed for instance in [45]). Due to these properties,
the instabilities encountered in applying direct minimization approaches to metals (see
section 2.8) are removed, providing a rapid and stable convergence to the ground state, and
quick convergence of the Hellmann–Feynman forces, as is necessary for efficient structural
relaxations and molecular dynamics simulations [15–17, 43].
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Figure 1. Schematic illustration of the density of states in a metal. The left-hand panel shows the
DOS without smearing; the right-hand panel shows it with smearing.

2.8. Issues for calculations on metallic systems

One major problem in the case of metals arises from the occurrence of discontinuities when
crossing the Fermi surface. When using periodic boundary conditions, all observables, such
as the charge density of the system, become integrals over the first Brillouin zone in reciprocal
space. These integrals are evaluated in practice by summation over a finite number of k-
points, and the computational cost is linearly proportional to the number of points in the mesh.
Systematic methods have been given [46, 47] for generating computationally expedient meshes
of k-points. Unfortunately, when the function being integrated is discontinuous, the accuracy
of a finite set of k-points in the Brillouin zone decreases dramatically.

This is exactly the situation in a metal at zero temperature: states inside the Fermi surface
must be included in the integrals, and states outside, where the occupation is zero, do not
contribute at all. The left-hand panel of figure 1 illustrates the integration of the density of states
up to the Fermi energy required for calculating properties of the system; the sharp discontinuity
in the occupation number at the Fermi energy means integration of a discontinuous function
must be performed.

A solution is to introduce a finite electronic temperature, that results in a smearing of the
Fermi surface, and greatly improves the accuracy of sampling in the Brillouin zone. The right-
hand panel of figure 1 shows a metallic density of states that is broadened near the Fermi energy
and demonstrates how the discontinuity there is smoothed. This will improve the accuracy of
integrals evaluated using a coarser set of k-points.

The absence of an energy gap in metals also causes problems for application of the
Car–Parrinello method to their study. As mentioned earlier, in the CP scheme, where a
metastable adiabatic separation between the electronic and ionic subsystems is required, the
largest time step that will maintain that separation is related to the energy gap. In the case of
a metal, the absence of a gap means there is always significant overlap between the typical
frequencies of the ionic and electronic subsystems, resulting in an immediate breakdown of the
adiabatic separation. As mentioned before, solutions proposed include coupling thermostats
to the electronic subsystem [9, 10], and the use of mixed Car–Parrinello/ensemble-DFT
approaches [11, 12, 16]. A final cautionary note is that the Born–Oppenheimer separation
requires further justification for application to metallic systems as the electronic excitations
overlap with the ionic frequencies; Migdal’s theorem [48, 49] is needed to show the validity
of using the Born–Oppenheimer separation in a metal.



Ab initio molecular dynamics of metal surfaces S2587

2.9. Generalized smearing schemes and cold smearing

Use of a finite-temperature formulation as a device to improve sampling of the Brillouin
zone in calculations on metals, as discussed in the previous section, was first introduced
by Fu and Ho [50]. The systematic errors introduced into a calculation by the use of such
a finite-temperature ‘smearing’ of the Fermi surface can be corrected a posteriori, as has
been extensively discussed in [45, 51]; while correction of the energies is straightforward,
corrections for all other expectation values (e.g. forces) would require full linear-response
calculations, which would be impractical for example in a molecular dynamics simulation.

Here we show how generalized smearing schemes can minimize the systematic errors
introduced by a finite-temperature formulation. An extensive discussion of this topic can be
found in chapter 4 of [44]. It was shown in [44, 51, 52] how finite-temperature formulations
can be generalized by introducing arbitrary and general classes of free energies and entropies.
The procedure is to choose the equilibrium thermal distribution (with suitable properties), and
then derive the form of the entropy consistent with it. An inverse approach is thus pursued:
instead of starting from a counting relation (the Pauli principle) and determining an equilibrium
distribution (the Fermi–Dirac) from the requirement of maximizing the entropy (as in statistical
mechanics), with the entropy itself a measure of the number of states available, the equilibrium
distribution is arbitrarily chosen, and the form of the entropy that follows from the minimization
requirement is derived. The choice is made that the (fictitious) thermal distribution can be
written as

f (x) =
∫ x

−∞
g(t) dt, (47)

where g(t) is a broadening function normalized to 1 (or 2, in the case of spin degeneracy).
This relation provides an operative definition of the fictitious temperature as an integrated
broadening, with full freedom to choose the function g, as long as the usual physical constraints
on the occupancies are satisfied. This relation can be propagated to the entropy; in the non-
interacting picture the entropy is a linear combination of single-particle terms

S[{ fi }] =
∑

i

Si =
∑

i

S( fi ), (48)

and so a functional form for the entropy can be determined by integrating:

dS

d f
= ε − µ

σ
= −x ⇒ dS

dx
= −x

d f

dx
(49)

f (x) =
∫ x

−∞
g(t) dt ⇒ Si =

∫ xi

−∞
−tg(t) dt . (50)

The previous relation provides an operative connection between the choice of a broadening
function and the actual form of the entropy; as an example, if the following form for g(t) is
chosen (assuming spin-degeneracy),

g(t) = 2

(e
t
2 + e− t

2 )2
, (51)

the entropy that is derived according to the procedure above is

S = −2
∑

i

[yi log yi + (1 − yi) log(1 − yi)], (52)

with

yi = fi

2
= 1

e
εi −µ
σ + 1

= 1

e−xi + 1
. (53)
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In addition to recovering this well known result, the freedom in choosing the broadening
function can be exploited to identify arbitrary generalized free energies as functions of
the thermal distributions. For instance, it is often convenient to employ in practical
calculations [53] a Gaussian entropy,

S = 1√
π

∑
i

e
−

(
εi −µ
σ

)2

, (54)

as obtained from the broadening:

g(t) = 2√
π

e−t2
. (55)

One problem of generalizing beyond the Fermi–Dirac distribution is that in the generalized
schemes an important result is lost: the entropy is no longer expressible as a function of
the occupation numbers fi , but only as a function of their inverse under the equilibrium
thermal distribution, namely the εi . It should be noted that the self-consistency condition
(d(E − T S)/d f = 0) implies that

dS

d fi
= −xi , (56)

i.e. the derivative of the entropy is equal to minus the normalized distance between the Fermi
energy and the inverse of the occupation; this relation is useful if the steepest-descent directions
on the occupancies are needed.

An alternative strategy for applying a ‘thermal’ smearing is to convolve the exact density
of states with some smooth approximation δ̃(x) to the Dirac delta function. The approach taken
by Methfessel and Paxton [54] in deriving a broadening function was along these lines and
involved use of the first N terms in the expansion of the delta function in Hermite polynomials.
The resulting smearing term has the form of a quadratic polynomial multiplied by e−x2

and leads
to a dependence of the free energy on the temperature that is quartic. A significant problem with
this approach is that the occupation numbers are not positive definite, so negative occupancies
are possible and such negative occupancies can lead to unphysical results. This is especially
important in the case of metal surfaces, where states that are close to the Fermi energy, and thus
possibly having negative Methfessel–Paxton occupancies,are also those most likely to spill into
the vacuum, which leads to an overall ‘negative’ region of density. The flexibility in choosing
broadening functions and consistent entropies allows a formulation combining the advantage
of the Methfessel–Paxton scheme (i.e. systematic elimination of the quadratic errors) while
avoiding its most troublesome consequence for self-consistent calculations (i.e. the introduction
of negative occupation numbers). The cold smearing [44] is a choice of broadening function
that remedies the problem of negative occupancies associated with the Methfessel–Paxton
smearing. The derivation of the broadening functional is subject to these constraints:

(i)
∫ ∞
−∞ dx δ̃(x) = 1 normalization;

(ii)
∫ ∞
−∞ dx x δ̃(x) = 0 zero entropy at zero temperature;

(iii)
∫ ∞
−∞ dx x2δ̃(x) = 0 no second order term in entropy (cold smearing);

(iv)
∫ t
−∞ δ̃(x) dx � 0 positive occupancies.

The simplest form that can be used turns out to be a third degree polynomial:

δ̃(x) = 1√
2

(
ax3 − x2 − 3

2
ax +

3

2

)
e−x2

(57)

where there is some freedom in the value of the parameter a that ensures the occupancies
are positive definite; the value that has been used in the work to be described in section 4
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is a = −0.5634. A less ‘structured’ and somewhat more elegant alternative expression was
introduced in [15]:

δ̃(x) = 2√
π

e−[x−(1/√2)]2
(2 − √

2x). (58)

It is interesting to note that the flexibility of generalized entropic formulations can be used
to recover target finite-temperature (e.g. Fermi–Dirac) distributions, instead of the zero-
temperature limit; a clear description of the approach is provided in [55].

2.10. Other work on metal surfaces

An impressive body of work has emerged on the chemistry and thermodynamics of metal
surfaces in the past years, motivated primarily by their central importance as catalytic materials.
Most of this work is based on static calculations and ionic relaxations, and so is not reviewed
here in detail. Very robust iterative self-consistent techniques (e.g. [14, 56]) have nevertheless
been central to the widespread application of density-functional approaches. For recent
applications the reader is referred to [57–61] and references contained therein.

3. Metal surfaces at finite temperature

The thermodynamic stability of metal surfaces presents a very rich phenomenology [62, 63]:
whereas the exotic reconstructions of semiconductor surfaces, driven by the strong covalent
dangling bonds, are missing, the interplay of subtle energetic and entropic effects leads to a
variety of different temperature-dependent behaviours. At lower temperatures surfaces can be
either relaxed with respect to the ideal bulk geometry, or reconstructed in some simple way
(e.g. in the missing row transition). The zero-temperature relaxation can often be understood
in terms of simple models based on charge-density considerations [64]; for instance, the
contraction of the inter-layer distance of the surface atoms found in the less packed, open
surfaces (such as the fcc (110)) can be understood as a mechanism to increase the density
surrounding the surface atoms, that ‘dive’ towards the bulk.

Higher temperatures enhance the imbalance between the different anharmonic
contributions, and lead to a pattern of relaxations or de-relaxations of the inter-layer
spacings [65–69]. In addition, entropic effects can lead to a deconstruction of the eventual
reconstructed phase. At increasing temperatures the more open surfaces can start to develop
defects (e.g. the formation of adatoms and vacancies), while the more close-packed surfaces,
having a higher defect formation energy, can maintain ordered coherence up to the melting
point. The (111) surfaces of fcc metals can be ‘overheated’, meaning they remain ordered even
at temperatures above the bulk melting point. These different behaviours with temperature can
be expected to strongly influence the free energy barriers and the mechanisms of diffusion for
adatoms present on the surfaces. In addition, some peculiar phase transitions of the surface
happen whenever the free energy for the formation of overlayer structures vanishes. Notably,
a roughening transition [70] can occur, characterized by a diverging height–height correlation
along the surface, that takes the form of a terraced landscape. This could be preceded by a
pre-roughening transition [71, 72] in which disordering is confined to the surface overlayer
and the long-range stability is preserved, in what is a disordered flat phase.

Before reaching the melting temperature of the bulk system,it is possible that a self-wetting
initiates on the surface, as a consequence of the half-balanced periodic potential that the surface
ions experience, and of the increased anharmonicity around the equilibrium positions [73].
The phenomenology of the surface melting and pre-melting is quite complex [63]; different
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surfaces, or different orientations of the same system, can exhibit a complete melting, where
the thickness of the liquid phase increases as the bulk transition temperature is approached,
or just a limited, blocked melting of the upper layers. The characterization of these processes
is a current area of research, with focused experimental [74, 75] and theoretical [66, 67, 76]
efforts.

4. Applications

Two applications will be discussed here, with the goal of showing the efficiency and
microscopic understanding provided by the Born–Oppenheimer MD/ensemble-DFT first-
principles approach we have described.

4.1. Thermal contraction and premelting of Al(110)

Several experimental studies of the finite-temperature properties of Al metal surfaces have
appeared [77–81], together with theoretical works based on semi-empirical methods [76, 82],
or restricted to zero-temperature total energy calculations [83] (that are in themselves a
fundamental source of understanding). The Al(110) surface is unreconstructed, and displays
a pattern of damped oscillatory interlayer relaxations. Experimental LEED (low-energy
electron diffraction) measurements on Al(110) indicate a negative thermal expansion of the
first interlayer distance, and a large positive expansion for the second interlayer distance, at
variance with earlier computer simulations. For the case of Al(110), several experimental
techniques have shown the appearance of a disordered, liquid layer at temperatures between
770 and 815 K [77–81], whereas the bulk melting temperature is 933 K. On Al(110) this
premelting transition is preceded by an anomalous proliferation of adatoms on the surface, for
which there is no reliable microscopic picture.

The study of Al(110) reported in [43] involved eDFT molecular dynamics simulations
in a range of temperatures between 400 and 900 K. Besides reproducing the observed low-
temperature pattern of interlayer relaxations, it provided a theoretical prediction of a thermal
contraction for the outermost interlayer distance, for which solid experimental evidence
has now been accumulated [84–87]. The origin of this anomalous contraction lies in the
microscopic dynamics at the surface and in the layer below. As shown in figure 2, where the
molecular dynamics trajectories for a sample run are plotted, the mean square displacements of
atoms in the second layer in the direction perpendicular to the surface end up being larger than
those of the atoms in the first layer. This strongly anisotropic dynamics, reported in figure 3,
leads to a very anharmonic behaviour—in particular, the dependence of the mean square
displacements in the second layer on temperature is stronger than linear. As the temperature
increases, the second-layer atoms oscillate well beyond the Lindemann criterion for melting,
creating a number of adatom/vacancy pairs that are responsible for the disordering and then
melting of the surface.

4.2. Liquid metal surfaces

The second application of the BOMD/eDFT ab initio scheme that we will discuss is the study
of liquid sodium surfaces [17, 88]. This work represents the first MD study of the surface of a
typical liquid metal using a conventional version of DFT, though very recently MD simulations
of lithium and sodium liquid surfaces by orbital-free DFT (which is an approximate form of
DFT with reduced computational cost) have appeared in the literature [29]. Previously the
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Figure 2. Left-hand panel: eight-layer Al(110) supercell used in the simulations. Right-hand panel:
MD trajectories during a simulation, highlighting the anisotropic mean square displacements in the
surface and in the second layer.
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only DFT work for liquid surfaces focused on silicon, which shows an unconventional metallic
behaviour, retaining substantial covalent bonding character in the melt [89].

Simulations of liquid metal surfaces are motivated by the need to complement with
microscopic insights the ‘integrated’ experimental information coming from recent x-ray
reflectivity measurements5. The occurrence of a peak in the x-ray reflectivity at the
liquid–vapour interface is consistent with a stratification of the ions on the liquid side into
layers parallel to the interface. Such a peak was initially detected for Ga [90, 91], Hg [92, 93]
and In [94], and also some alloys [95, 96].

The pure metals studied in those experiments have large surface tensions, which suppress
thermal fluctuations, thus allowing the measurement of the microscopic surface structure.

5 Internet page of the Harvard x-ray group: http://www.liquids.deas.harvard.edu/

http://www.liquids.deas.harvard.edu/
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Alkali metals have significantly lower surface tensions, which result in thermally induced
surface roughening; disentangling the layering behaviour from roughening effects due to
capillary waves has been a challenging task in the experiments. It is only very recently
that data on a pure alkali metal, K [97], have been reported. Such measurements suggest that
low-surface-tension metals also layer, with a lead-up to a peak rather than a peak in the x-ray
reflectivity detected. On the other hand, for water, which has a surface tension comparable to
that of K but is a dielectric, no evidence of the occurrence of a peak in the x-ray reflectivity
was observed [98].

A layered profile in the atomic density across the vapour–liquid interface, as measured in
metals, is markedly different to that expected for dielectrics, where, in traversing the liquid–
vapour interface, the density profile decreases monotonically from the value characteristic
of the bulk liquid to that of the vapour. This structural disparity highlights fundamental
differences in the behaviour of the free surfaces of metals and dielectrics. In a metal the
nature of the interactions changes dramatically across the vapour–liquid interface, going from
metallic bonding, where the valence electrons are delocalized, in the liquid to van der Waals
bonding, with the electrons localized on atoms, in the vapour phase. In a dielectric the nature
of the interaction does not change across the liquid–vapour interface.

Although a few explanations have been proposed to elucidate the layering mechanisms,
many open questions still remain. One explanation was put forward by Rice and co-
workers [99–101]. Based on their ‘effective Hamiltonian’ calculations, they proposed that
layering at the surfaces of liquid metals is caused by the rapid decay of the electronic density
at the surface acting like a ‘hard wall’ against which the ions are packed (the formation of
layers in a liquid interfaced to a rigid wall is a well known phenomenon [102]). A second
explanation was derived from glue model simulations by Iarlori et al [103], and Di Tolla [63].
It is based on the idea that the under-coordinated ions at the surface attempt to get closer to the
optimal coordination they would have if they were in the bulk, by contracting inward towards
it. This results in an increased density in the outermost part of the interface, which then causes
a density oscillation that propagates from the surface into the bulk. The explanations for
the mechanism of layering mentioned above have their roots in the metallic character of the
interactions. Recently it has been proposed that the formation of layers at free liquid surfaces
may not be unique to metals, but might generally be seen at temperatures well below the
critical temperature TC in systems having a low ratio, TM/TC, of the melting temperature to the
critical temperature [104–106]. The suggestion, supported by Monte Carlo simulations with
pair potentials, is that the many-body nature of the metallic interactions does not necessarily
play a leading role (aside from determining the shape of an effective pair potential). The
layering would also be seen in dielectric materials, but since they usually have a larger TM/TC,
the formation of layers is pre-empted by solidification and therefore cannot be observed.

Motivated by the above, we chose to study alkali metals (in particular sodium) using
first-principles molecular dynamics. Because the alkali metals are prototypes of nearly-free-
electron behaviour, they allowed us to study the surface layering mechanisms without the
complications of more complex binding such as in Ga and Hg.

Our sodium simulations contribute to clarify the picture of the mechanisms of ionic layer
formation at the surfaces of liquid metals that have been put forward in the literature. BOMD
simulations were performed for liquid sodium surfaces with electronic structures determined
by ensemble DFT [17, 88]. MD simulations of just over 50 ps were made using slabs of
about 160 atoms plus vacuum regions of thickness ∼11 Å, and using the periodic boundary
conditions/supercell approach mentioned in section 2.5. Troullier–Martins pseudopotentials
were used with the PW91 generalized gradient approximation [107] to the exchange and
correlation functional; these pseudopotentials included the non-linear core correction [108].
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Figure 4. Density profiles averaged in planes parallel to the liquid–vapour interface for sodium
from BOMD/eDFT simulations at temperature T = 400 K (left) and T = 500 K (right). The solid
curve shows the ionic density profile, the dashed curve the valence electron density profile.

The Kohn–Sham orbitals were expanded in a plane wave basis set. Two different temperatures,
T = 400 and 500 K, the first being just above the experimental sodium melting temperature
(TM = 373 K), the second higher, were examined, to observe the temperature dependence of
the surface structure. Also, simulations using two geometrical cross-sections for the supercell
(one consistent with cubic and the other with hexagonal symmetry) were made, in order to
eliminate potential biasing of the in-plane surface structure by the supercell geometry. System
size effects were also assessed.

We found that liquid surfaces of Na do layer, with an inter-layer spacing of about 3 Å,
consistent with a close-packed arrangement of atoms against a ‘hard wall’. Examples of the
ionic and electronic density profiles (averaged in planes parallel to the surface) are shown in
figure 4, for simulations at T = 400 and 500 K. The oscillations that can clearly be seen in those
density profiles signify the formation of ionic layers at the surface, as found in the experimental
results for the metals studied using x-ray reflectivity measurements. As illustrated in figure 4,
stronger layering was observed in the simulations at lower temperatures.

A related goal of the sodium work was to understand the relevance of the Friedel
oscillations for the layer formation mechanism. The Friedel oscillations [33] appear in the long-
range tail of the screening response of the valence electrons in a metal to a local perturbation.
Near the surface of a metal, Friedel oscillations are expected to appear as the valence electrons
screen the disruption caused by the presence of the surface. It was recently suggested [109] that
Friedel oscillations are responsible for fine-tuning of the interlayer relaxations at the (101̄0)
surface of solid Mg, so it is natural to ask what effect they might have at the surface of a
liquid metal. The Friedel oscillations in sodium have a wavelength that is similar to the layer
spacing; they are however a subtle effect, that is difficult to disentangle from ‘hard wall’ effects
caused by the rapid decay of the electronic density at the surface. The electronic structure and
dynamical information provided by first-principles MD calculations address some aspects of
how the Friedel oscillations are affected by the structural and thermal disorder in the melt in
relation to their possible role in tuning the surface layering.

Finally, we analysed whether any in-plane order is present at the liquid surfaces: we found
mainly a fivefold coordination order (reminiscent of the icosahedral symmetry hypothesized
for simple liquids) with hexatic regions which tend to become larger as thermal disorder is
reduced by decreasing the temperature. In figure 5 two-dimensional plots of the ionic density
in slices parallel to the interface (for slices near the left-most peaks in the density profiles of
figure 4) are shown, for the two temperatures simulated. The plots shown provide an indication
of the amount of structure present parallel to the surface.
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Figure 5. Two-dimensional ionic density plots for sodium from BOMD/eDFT ab initio simulations
at T = 400 K (left) and T = 500 K (right), with the slices taken at approximately the positions of
the left-most peaks in the ionic density profiles of figure 4. Red indicates the highest density; blue
the lowest.

Using the ab initio BOMD/eDFT technique, we have obtained detailed and accurate
microscopic information on the structure and dynamical behaviour of the liquid sodium surface
at different temperatures. This has allowed us to look at the structure both along the normal
to the surface, where we observe atomic layers, and in the plane of the surface.

5. Conclusions

We have reviewed an accurate and efficient method for performing ab initio dynamical studies
of metallic systems: the Born–Oppenheimer molecular dynamics coupled with the ensemble
density functional theory. To demonstrate the scope of the technique we have presented
two applications where subtle electronic and dynamical effects, that are characteristic of
metallic surfaces, were studied in detail using first-principles molecular dynamics. The peculiar
structural and dynamical effects occurring at the Al(110) surface close to the premelting point,
and in liquid Na surfaces, were described at length.
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